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Abstract—This article investigates an innovative state esti-
mation technique implemented within an advanced distributed
framework, aimed at reducing computational complexity while
detecting multiple sensor faults in hydrogen-blended natural
gas pipelines. The novel distributed estimation technique is
based on the ensemble Kalman filter (EnKF) and is referred to
as partial-distributed multisensor fault detection, isolation, and
accommodation. The architecture includes a set of local EnKFs
and an information fusion center. These local filters operate
simultaneously to generate unique local state estimates based on
a distinct set of sensor measurements, which are subsequently
transmitted to the information fusion center for the computation
of fault-free state estimates. To reduce computational complexity,
the partially distributed approach segregates nonlinear computa-
tions from the local filters and delegates them to the main filter.
Additionally, a fault diagnosis strategy is developed based on local
state residuals. Since each local filter generates a distinct local
state estimate based on its unique set of sensor measurements,
comparing the local state residual against a threshold facilitates
the identification and isolation of faulty sensors. Furthermore,
an adaptive thresholding approach is incorporated to facilitate
effective fault identification and isolation. The proposed technique
has proven to be effective in highly nonlinear, and high-
dimensional systems with simultaneous multiple sensor faults.
The effectiveness of the proposed approach is demonstrated
through extensive simulations and comparative analyses.

Index Terms—Data fusion, ensemble Kalman filter (EnKF),
fault diagnosis, hydrogen-blended natural gas pipelines, multiple
sensor faults, partial-distributed architecture.

I. INTRODUCTION

THE CONTINUOUS surveillance of gas pipelines is of
paramount importance to guarantee the overall safety

and reliability of the entire system. With the progression of
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digital technologies, several monitoring systems for urban
gas pipelines have emerged for potential leak identifica-
tion [1], [2]. These systems typically employ a variety of gas
monitoring sensors to continuously observe the gas pipelines,
aiming to identify potential leaks and enhance the reliability of
the pipeline infrastructures [3], [4], [5]. However, it is crucial
to acknowledge that the sensors installed in these pipelines
can occasionally become faulty due to factors, such as harsh
environmental conditions, aging, improper calibration, and
hardware failures, or even communication errors. The sensor
faults causing incorrect measurements could result in delayed
or overlooked leak detection, potentially leading to wrong
decisions with potentially severe consequences [6]. Hence,
there is a critical need to develop effective techniques that
can identify sensor faults within gas-monitoring systems in a
timely manner. Moreover, the growing adoption of hydrogen-
blended natural gas for environmental-friendly heating and
power generation introduces a new challenge for gas monitor-
ing sensors, necessitating special attention and consideration
that have not been previously addressed.

The sensor fault diagnosis techniques can generally
be grouped into two categories: 1) data-driven [7] and
2) model-based [8] approaches. Data-driven methods utilize
real-time/historical data to diagnose sensor faults [9], [10],
[11], [12]. However, their reliance on extensive recorded data
streams necessitates a sizeable database, and their substan-
tial computational requirements render them impractical for
online applications. On the contrary, model-based methods
rely on the assumption that an accurate system model and its
parameters are available. They entail comparing actual process
measurements with those predicted by the model, generating
a residual signal for detecting faults [13], [14], [15]. These
methods outperform the data-driven approaches when an
accurate mathematical system model exists, offering better
real-time performance.

The current state-of-the-art approaches have largely over-
looked the substantial challenge of managing multiple sensor
failures in large-scale and highly nonlinear systems. Moreover,
the existing distributed estimation methods pose a signifi-
cant challenge due to their high computational complexity,
especially with large-scale systems comprising numerous sub-
systems or local filters. In such systems, each subsystem
typically involves repetitive nonlinear calculations related to
the system model, which significantly increases the overall
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computational load. To tackle these challenges, it is crucial to
develop new distributed architectures that minimize redundant
nonlinear computations and possess the capability to efficiently
handle multiple sensor faults while ensuring a low computa-
tional complexity.

A. Related Works

Several techniques are available within the model-based
approaches, such as parity space [16], parameter estima-
tion [17], and state estimation [18], [19]. Among these
model-based methods, the Kalman filter (KF) has been
extensively preferred due to its robustness and effectiveness,
providing optimal state estimation, particularly for linear
systems affected by Gaussian noise [20]. Its optimality in han-
dling linear systems has spurred the development of various
modifications to handle state estimation in nonlinear systems,
including the extended KF (EKF) [21], the unscented KF
(UKF) [22], the ensemble KF (EnKF) [23], and the cubature
KF (CKF) [24].

In recent decades, decentralized KF-based architectures
have gained significant importance to face limitations experi-
enced by centralized KF-based architectures, such as hardware
constraints, communication interference, time-varying char-
acteristics, and other design factors [22], [25], [26]. More
specifically, distributed architectures alleviate these challenges
by dividing the computation among several multiple local
filters: an approach enhancing decision-making while reduc-
ing the overall computational load [27], [28], [29], [30].
Distributed architectures relying on information fusion are
often preferred for effectively merging outputs from numerous
local filters within large-scale systems. These techniques
ensure high accuracy and enhance robust fault detection while
minimizing communication load [31], [32].

Centralized and distributed architectures based on EKFs are
developed and compared in [33], with the former exhibiting
high estimation accuracy and poor robustness to sensor faults,
while the latter struggling with nonlinearities and multiple
sensor faults. Robustness with respect to measurement delays
and losses was handled by the distributed federated KF-based
fusion method discussed in [34], which requires however
significant computational power and memory in large-scale
systems and still cannot deal with highly nonlinear systems.

Data fusion techniques based on redundancy for detecting
multiple faults (both hardware and software) are explored
in [35], [36], and [37], but their complexity significantly
increases with the number of multiple faults to be addressed.
In [31], a sensor-fusion approach utilizing multiple KFs is
presented for nonlinear systems, where each filter is tailored
for a specific defect, however, this method has significant
computational cost limitations. Wasserstein average-consensus
classification was introduced in [38] to deal with multiple-sensor
faults, but its use is limited to linear systems. Furthermore, a
trust-based distributed KF architecture is proposed in [39] to
enhance resilience against cyber attacks. Doostmohammadian
and Meskin [40] proposed a decentralized technique, where
local estimators perform preliminary fault detection and
share information with the neighboring nodes, however, this

method does not account for nonlinear systems. Moreover, the
consensus-based methods, where the nodes are interconnected
and share estimates, require robust communication links among
local filters. This poses significant challenges for large-scale
systems and is beyond the scope of our work.

An EKF-based partial distributed architecture is proposed
in [42] to identify sensor and process faults within a gas tur-
bine engine. Also, our previous works [43], [44] developed a
model-based sensor fault detection, isolation and accommoda-
tion (SFDIA) framework for natural gas pipelines still focusing
on single fault detection. Differently, a sensor-fusion technique
based on UKF is explored in [45] for monitoring a gas turbine
engine, considering four different combinations of local filters
for the sensors installed on the gas turbine. Although focusing
on typical nonlinearities present in process engineering, all
these methods are primarily designed for single-fault scenarios
and becomes computationally intensive and poor performing
when handling multiple sensor faults. Finally, our recent
work [40] explored the detection of simultaneous multiple
sensor faults using an architecture based on distributed EnKFs,
however, the architecture encounters substantial computational
complexity owing to a fully distributed structure.

B. Contributions of This Article

It is apparent that methods effectively handling multiple-
sensor faults in large-scale nonlinear systems, as often required
in process engineering and industrial applications, are not
available. Inspired by the works in [45] and [40], the architec-
ture proposed here introduces a novel partially distributed (PD)
filtering framework handling multiple-sensor faults within a
highly nonlinear, complex, and large-scale distributed system
of natural gas pipeline while significantly reducing the compu-
tations by separating the nonlinear calculations from the local
filters and relocating them to the main filter.

More specifically, we propose a novel partial-distributed
EnKF-based architecture designed to alleviate the computa-
tional challenges associated with nonlinear state estimation
and handle faults of multiple sensors in natural gas pipelines.
The proposed framework leverages the partial-distributed fil-
tering structure that segregates the nonlinear computations
from the local filters and transfers them to the main filter.
The main filter is responsible for managing the time update
and information fusion, while the local filters focus on the
measurement updates. This approach significantly reduces
the computational complexity of the overall system while
offering distinct advantages in high-dimensionality and large-
scale systems via the EnKF-based architecture. Further, a
novel fault-tolerant approach based on local state variance and
residual is introduced. This approach involves identifying high
values in these metrics during faulty conditions, aiding in the
isolation of faulty state estimates from the information fusion
scheme. Also, an adaptive thresholding technique dynamically
adjusts according to the evolving system conditions, thereby
improving the accuracy of the fault detection. The final global
estimate is obtained using the information fusion that merges
the nonfaulty outputs of all the local filters.
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TABLE I
COMPARING THE PROPOSED WORK WITH THE EXISTING STATE-OF-THE-ART WORKS

Moreover, we consider the transportation of hydrogen-
blended natural gas through pipelines, a practice recently
endorsed by natural gas utilities [46]. The thermodynamic
properties and flow conditions in pipelines carrying hydrogen-
blended natural gas differ from those handling only natural
gas. Additionally, we employ more sensors and highly non-
linear flow conditions that increase the complexity of the
system dynamics in comparison to [43] and [45]. Under these
complex conditions, our proposed technique offers superior
estimation and fault detection performance, coupled with low
execution time compared to the existing methodologies.

Table I presents a comparative qualitative analysis of our
proposed approach against the relevant state-of-the-art fault
diagnosis techniques. The key contributions of this article are
as follows.

1) We explore for the first time an innovative model-based
sensor fault detection tailored for hydrogen-blended
natural gas pipelines undergoing transient flow. Our
study delves into a comprehensive flow model for
hydrogen-blended natural gas, encompassing its numer-
ical solution and emphasizing its practical applicability
in fault diagnosis (previously utilized solely for state
estimation [46]).

2) A novel architecture based on a PD EnKF-based frame-
work is proposed for nonlinear state estimation. The
architecture effectively separates the nonlinear computa-
tions from the local filters and redirects them to the main
filter while achieving exceptionally low computational
cost.

3) Further, a unique fault detection and isolation framework
based on local state residual is introduced to effectively
handle simultaneous multiple-sensor faults in large-scale
distributed systems. Additionally, an adaptive threshold-
ing technique is introduced to improve the fault detection
accuracy.

4) The performance of the proposed architecture is assessed
under the influence of synthetically induced weak bias
and drift sensor faults. These faults simulate abrupt
(hard) faults and gradually emerging (soft) faults.

The remainder of this article is organized as follows.
Section II introduces the transient flow model. Section III
elaborates on the proposed architecture and the adaptive
thresholding technique. Simulation results are presented and
analyzed in Section IV to substantiate the effectiveness of the
proposed architecture. Section V concludes this article with
some final remarks and possible future research directions.

II. TRANSIENT FLOW MODEL FOR HYDROGEN-BLENDED

NATURAL GAS PIPELINE

The transient flow of hydrogen-blended natural gas in
pipelines can be represented by a set of hyperbolic partial
differential equations (PDEs), given as [47]

∂x
∂t
+ A(x)

∂x
∂s
+ ζ (x) = 0 (1)

where t and s denote the time and spatial domain, respectively.
The spatio–temporal behavior can be collectively described as
� = {(s, t) : 0 ≤ s ≤ L, 0 ≤ t ≤ tf }, where L is the length
of the pipeline and tf indicates the time duration. Further, the
state vector x = [p, ṁ, T]T includes pressure (p), flow rate
(ṁ), and temperature (T), while (·)T is the transpose operator.

The matrix A(x) ∈ R
3×3, provided in (2), shown at the

bottom of the page, represents the coefficient matrix [48], [49],
and the vector ζ (x) ∈ R

3×1 is defined as

ζ (x)=
[
− a2

s a1(Aqp+RTṁwz)
A2TCpp

w − a2
s a2(Aqp+RTṁwz)

A2Cpp2

]T

where a1 = 1+ [T/z](∂z/∂T)p, a2 = 1− [p/z](∂z/∂p)T . The
symbols as z, R, and Cp represent the isentropic wave speed,
the gas compressibility factor, the ideal gas constant, and the
specific heat at constant pressure, respectively [47], [50], [51].

A(x) =

⎡
⎢⎢⎢⎣

− ṁ
(
a2

s a2−RTz
)

Ap
a2

s
A

a2
s ṁa1
AT

A− a2
s a2

2Cpṁ2−Ra2
s a2

1a2ṁ2z
ACpp2

ṁ
(
a2Cpa2

s−Rza2
s a2

1+RTCpz
)

ACpp
a2

s a1ṁ2
(
a2Cp−Ra2

1z
)

ATCpp

−RTa2
s a1a2ṁz

ACpp2
RTa2

s a1z
ACpp

Rṁz
(
a2

s a2
1+TCp

)
ACpp

⎤
⎥⎥⎥⎦ (2)
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Fig. 1. Block diagram of the proposed partial-distributed architecture.

Exploiting the numerical method of lines [52] which relies
on spatial discretization, a 5-point, fourth-order finite differ-
ence method is employed to convert the system of PDEs
in (1) into a set of ordinary differential equations (ODEs). This
approximation introduces an error of order O(�s4), with �s
being the spatial step size. The modified state vector x(t) ∈
R

3n×1 can be expressed as

x(t) = [p1(t), . . . , pn(t), ṁ1(t), . . . , ṁn(t), T1(t), . . . , Tn(t)
]T
(3)

with pi(t), ṁi(t), and Ti(t) denoting pressure, flow rate, and
temperature to the ith spatial node. Moreover, the system of
ODEs can be formulated as

dx(t)

dt
= B(x)Dx(t)− c(x, t) � ϕ(x(t), t) (4)

where B(x) ∈ R
3n×3n is the assembled matrix of A(x), is a

full rank matrix and completely observable c(x, t) ∈ R
3n×1 is

the assembled column vector of ζ (x), and

D=− 1

12�s

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−25 48 − 36 16 − 3 · · · 0
−3 − 10 18 − 6 1 · · · 0
1 − 8 0 8 − 1 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · 1 − 8 0 8 − 1
0 · · · − 1 6 − 18 10 3
0 · · · 3 − 16 36 − 48 25

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The system of ODEs in (4) can be further solved using
an effective numerical technique known as the fourth-order
Runge–Kutta (RK4) integrator. When discretized using a
constant time step (�t), the system of ODEs can be expressed
as a state-space model and its evolved solution at the time
instant tk = k ·�t, denoted xk = x(tk) can be described as

xk+1 = xk + �t

6
(k1 + 2k2 + 2k3 + k4)

where k1 = ϕ(xk, k�t), k2 = ϕ(xk + k1[�t/2], (2k +
1)[�t/2]), k3 = ϕ(xk + k2[�t/2], (2k + 1)[�t/2]), and k4 =
ϕ(xk + k3�t, (k + 1)�t).

To maintain numerical stability, it is important to satisfy the
Courant–Friedrichs–Lewy (CFL) condition [53], expressed as

�t

�s
≤ 1

|ν| + as
. (5)

III. PARTIALLY-DISTRIBUTED MULTISENSOR FAULT

DETECTION, ISOLATION, AND ACCOMMODATION

ARCHITECTURE

The proposed design exploits a PD filtering structure,
separating the nonlinear computations from the local filters
and assigning them to the main filter [42]. Here, the main
filter handles the time update and the information fusion,
while the local filters focus on the measurement updates. This
strategy significantly enhances the computational efficiency
and reduces the system complexity.

To implement the proposed architecture, all sensor measure-
ments are initially grouped into distinct sets of measurements.
Each subset of measurements is assigned to a particular local
filter, as depicted in Fig. 1. Subsequently, the state estimation
is performed by the proposed partial-distributed architecture
using the following steps: 1) first, the nonlinear computation
(time update) is performed in the main filter; 2) the linear
local filters execute the measurement updates and estimate the
local state vectors and their associated covariance matrices
using their specific subset of measurements; 3) faulty estimates
are detected by comparing the state residual vector against an
adaptive threshold and, once a fault is identified, the faulty
estimate is replaced by a nonfaulty a piori estimate; and
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4) these corrected local estimates are utilized to generate
the global estimates in the information mixture, which are
fed to the main filter for initialization during the subsequent
iteration. In the following sections, the various steps employed
in implementing the proposed partial-distributed filter are
discussed in detail.

A. Grouping of Sensors

Initially, the number of locals and the number of mea-
surements allocated to each local filter are defined. For
grouping, we assume that each local filter is assigned a
unique/nonrepetitive set of measurements. Here, we are con-
sidering a total of M sensors and N local filters such that
each local filter receives M/N1 sensor measurements as input.
Consequently, each local filter independently generates a state
estimate using its specific set of measurements. Additionally,
the grouping technique guarantees that in the absence of sensor
faults, the estimated local state vectors from various filters are
similar. Hence, it becomes feasible to examine the deviations
among the independent local state vector estimates. This
methodology is highly effective in identifying faulty sensors,
making the proposed architecture a resilient and reliable solu-
tion for fault diagnosis. It is worth noting that this grouping
approach is most efficient when the sensor measurements are
uncorrelated and independent. In the following section, the
design of the proposed partial-distributed EnKF-based filter is
discussed.

B. Partially-Distributed Filter Design

The nonlinear state-space model can be formulated as

xk = f (xk−1, uk−1)+ vk

yi,k = hi(xk, uk)+ ni,k

where f (·, ·) : R
nx × R

nu → R
nx is the nonlinear mapping

associated with the main filter, xk ∈ R
nx×1 denotes the state

vector and vk ∈ R
nx×1 ∼ N (0, Qk) is the process noise.

Further, yi,k ∈ R
ny×1 and ni,k ∈ R

ny×1 ∼ N (0, Ri,k) represent
the measurement and the measurement noise corresponding
to the ith local filter, respectively, where i = 1, 2, . . . , N,
while we denote with yk = [y1,k, . . . , yM,k]T the collection
of the measurements from all the sensors at the kth time
slot. The input vector uk−1 ∈ R

nu×1 is defined as uk−1 =
[uT

inuT
bc,k−1]T, which includes both initial and boundary con-

ditions. Additionally, the mapping hi(·, ·) : Rnx ×R
nu → R

ny

characterizes the measurement model of the ith local filter. In
our case, a linear measurement model is considered such that
the mapping hi(xk, uk) is defined as hi(xk, uk) = Hixk. Here,
Hi ∈ R

ny×nx denotes the observation matrix of the ith local
filter, as described in [54]. The primary objective is to facilitate
dimensionality reduction of the state vector through one-to-
one mapping, depending upon the number of measurements
allocated to each local filter.

For state vector estimation, we propose a novel partial-
distributed EnKF-based design. The proposed algorithm is
derived from the EnKF, a prominent statistical approach for

1M/N must be an integer.

approximating probability distributions by directly drawing
samples from specific distributions. To address computational
constraints, the nonlinear computations are shifted from the
local filters to the main filter, i.e., the measurement updates
are carried out in the local filters, while the time update
and information fusion are performed in the main filter.
This method serves as a robust tool for state estimation in
high-dimensional nonlinear systems. Next, the different stages
encompassed in the state estimation process of the PD EnKF
architecture are outlined.

1) Initialization: First, the state vector estimate x̂0|0 is
initialized depending on the use case.

2) Nonlinear Computation in the Main Filter: At the main
filter, to approximately represent the conditional probability
distribution p(xk−1|Yk−1), being Yk−1 = {y1, y2, . . . , yk−1},
an ensemble of Ne samples, denoted {x̂(j)

k−1|k−1, 1 ≤ j ≤ Ne},
is generated according to

x̂(j)
k−1|k−1 = x̂k−1|k−1 + v(j)

k−1 , j = 1, 2, . . . , Ne (6)

where v(j)
k is noise samples generated according to the

process noise distribution N (0, Qk). Using the nonlinear map-
ping, the a priori ensemble representing p(xk|Yk−1), denoted
{x̂(j)

k|k−1, 1 ≤ j ≤ Ne}, can be produced as

x̂(j)
k|k−1 = f

(
x̂(j)

k−1|k−1, u(j)
k−1

)
+ v(j)

k . (7)

3) Linear Computations in the Local Filters: At the ith
local filter, to approximately represent p(yi,k−1|Yi,k−1), being
Yi,k−1 = {yi,1, yi,2, . . . , yi,k−1}, an ensemble of Ne measure-
ment samples, denoted {ŷ(j)

i,k|k−1, 1 ≤ j ≤ Ne}, is generated
according to

ŷ(j)
i,k|k−1 = Hix̂

(j)
i,k|k−1 + n(j)

i,k , j = 1, 2, . . . , Ne (8)

where n(j)
i,k is noise samples generated according to the mea-

surement noise distribution N (0, Ri,k).
The sample mean and covariance of the measurement

ensemble {ŷ(j)
i,k|k−1, 1 ≤ j ≤ Ne} can be computed as

ŷi,k|k−1 =
1

Ne

Ne∑
j=1

ŷ(j)
i,k|k−1 (9)

Py
i,k|k−1 =

1

Ne − 1
Ey

i,k|k−1

(
Ey

i,k|k−1

)T
(10)

where Ey
i,k|k−1 = [(ŷ(1)

i,k|k−1− ŷi,k|k−1), . . . , (ŷ(Ne)
i,k|k−1− ŷi,k|k−1)].

Similarly, the sample mean and covariance of the a priori
ensemble can be computed as

x̂i,k|k−1 = 1

Ne

Ne∑
j=1

x̂(j)
i,k|k−1 (11)

Px
i,k|k−1 =

1

Ne − 1
Ex

i,k|k−1

(
Ex

i,k|k−1

)T
(12)

where Ex
i,k|k−1 = [(x̂(1)

i,k|k−1−x̂i,k|k−1), . . . , (x̂
(Ne)
i,k|k−1−x̂i,k|k−1)].

The cross covariance between xi,k and yi,k, given Yi,k−1, can
be approximated as
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Pxy
i,k|k−1 =

1

Ne − 1
Ex

i,k|k−1

(
Ey

i,k|k−1

)T
. (13)

At the ith local filter, the conditional probability distribution
p(xi,k|Yi,k) is approximately represented via the a posteriori
ensemble associated with the kth time slot, denoted {x̂(j)

i,k|k,
1 ≤ j ≤ Ne} and computed, exploiting the latest measurement
yi,k, according to the following updating mechanism:

x̂(j)
i,k|k = x̂(j)

i,k|k−1 + Ki,k

(
yi,k − ŷ(j)

i,k|k−1

)
(14)

Ki,k = Pxy
i,k|k−1

(
Py

i,k|k−1

)−1
. (15)

Finally, the updated estimate of the mean and covariance are

x̂i,k|k = 1

Ne

Ne∑
j=1

x̂(j)
i,k|k (16)

Pi,k|k = 1

Ne − 1
Ex

i,k|k
(

Ex
i,k|k

)T
(17)

where Ex
i,k|k = [(x̂(1)

i,k|k − x̂i,k|k), . . . , (x̂(Ne)
i,k|k − x̂i,k|k)].

It is worth mentioning that the grouping technique outlined
in Section III-A is pivotal in fault detection and isolation as
it ensures that each local filter can independently generate its
estimates using a distinct subset of measurements. The generic
local filter computes the local state vector estimate using the
local subset of measurements, which exclusively impacts the
corresponding elements in the local state estimate, leaving
the other local filters unaffected. Additionally, the Kalman
gain matrix (Ki,k) significantly influences the a posteriori
state vector estimate (x̂i,k|k) of the local filter [23], [55],
maintaining nonzero values for elements associated with the
local measurements (yi,k) and setting the rest to zero. For
example, if the cth measurement is absent from the local
subset, all the elements in the cth column of the gain matrix
are set to zero, and then the a posteriori estimates of the
remaining elements remain equal to the a priori estimates. In
the subsequent section, we will delve into how this grouping
technique facilitates fault detection and isolation.

4) Information Fusion in Main Filter: Using the
a posteriori state estimates and covariance matrices of N local
filters, the global a posteriori state estimate x̂k|k and the global
state covariance matrix Pk|k corresponding to the main filter
can be computed as [32]

Pk|k =
(

N∑
i=1

P−1
i,k|k

)−1

, x̂k|k = Pk|k
N∑

i=1

P−1
i,k|kx̂i,k|k . (18)

The final state estimate (x̂k|k) is subsequently used as a prior
information during the next iteration.

All the steps involved in the state estimation procedure
(related to computations at both main and local filters) are
outlined in Algorithm 1.

5) Fault Detection and Isolation: For fault diagnosis, we
employ the local state residual vector (ri,k ∈ R

nx×1) as
decision statistic, whose �th entry is defined as

Algorithm 1: Implementation of the Partial-Distributed
State Estimation During the kth Time Instant

Input : A posteriori state estimate x̂k−1|k−1 during the
(k − 1)th time instant, number of local filters N
and ensemble size Ne

1 Main filter:
2 Generate ensemble of samples {x̂(j)

k−1|k−1}:
3 for each sample j = 1, . . . , Ne do
4 State vector ensemble generation via Eq. (6)
5 end for
6 Generate a priori ensemble {x̂(j)

k|k−1}:
7 for each sample j = 1, . . . , Ne do
8 Process model update via Eq. (7)
9 end for

10 N local filters:
11 for each local filter i = 1, . . . , N do
12 Assign a priori ensemble to ith local:
13 for each sample j = 1, . . . , Ne do
14 x̂(j)

i,k|k−1 = x̂(j)
k|k−1

15 end for
16 Generate local measurement

ensemble {ŷ(j)
i,k|k−1}:

17 for each sample j = 1, . . . , Ne do
18 Measurement model update via Eq. (8)
19 end for
20 Generate a priori local state estimate x̂i,k|k−1

and local covariance matrix Pi,k|k−1:
21 Sample mean and covariance of the

measurement ensemble via Eqs. (9) and (10)
22 Sample mean and covariance of the a priori

ensemble via Eqs. (11) and (12)
23 Generate a posteriori ensemble {x̂(j)

i,k|k} for ith
local:

24 for each sample j = 1, . . . , Ne do
25 Update each a priori ensemble sample by

incorporating the latest measurement via Eqs. (14)
and (15)

26 end for
27 Compute local state estimate x̂i,k|k and local

covariance matrix Pi,k|k:
28 Obtain sample mean and covariance of the a

posteriori ensemble via Eqs. (16) and (17)
29 end for
30 Main filter:
31 Combine N local filter outputs in the information

fusion to generate global outputs using Eq. (18)
Output: Global state estimate x̂k|k, and global state

covariance matrix Pk|k at the kth time instant

ri,k;� =
∣∣∣∣∣∣
x̂i,k|k;� − 1

N

N∑
j=1

(
x̂j,k|k;�

)
∣∣∣∣∣∣

(19)

being x̂i,k|k;� the �th entry of the state vector estimate
x̂i,k|k.

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on October 28,2024 at 10:36:23 UTC from IEEE Xplore.  Restrictions apply. 



35426 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 21, 1 NOVEMBER 2024

The local state residual vector quantifies the deviation among
the independent local state vector estimates. The local state
estimate exhibits high residual values only when its associated
sensor measurements are faulty. The evaluation based on the
residual values is directly linked with the sensor grouping
discussed in Section III-A. Each local filter processes a distinct
subset of sensor measurements, updating only part of the local
state vector estimate. When a sensor fault occurs, it affects only
the corresponding elements of the state estimate of the local
filter with the faulty measurements, while other filters’ estimates
remain unaffected. The residual, measuring the deviation of
one local filter estimate from the mean of all local filters’
estimates, becomes high for faulty estimates. For example,
if the M/Nth measurement of local filter 1 is faulty, it only
impacts the M/Nth element in the state estimate of the local
filter 1 and M/Nth estimate of remaining N − 1 local filters
remain nonfaulty. Further, the mean M/Nth state estimate
remains close to the nonfaulty value since most local filters
provide nonfaulty estimates, resulting in a high residual for
the 1st local filter and low residuals for other N − 1 local
filters.

By comparing the local state residual entries against
predefined thresholds, the presence of faults within the system
can be easily identified: if the �th state residual entry ri,k:�
exceeds the threshold γ�, a faulty state vector estimate at the
�th position of the ith local is declared, and its faulty local
state estimate x̂i,k|k can be corrected as

x̂i,k|k;� =
{

x̂i,k|k;�, ri,k;� < γ�

x̂i,k|k−1;�, ri,k;� > γ�
(20)

where the �th faulty entry of the state estimate x̂i,k|k;� is
substituted with the �th entry of the a priori state estimate
x̂i,k|k−1;� corresponding to the ith local filter, which is not
affected by the faulty local measurement. The use of a priori
state estimate ensures that no information is lost during fault
isolation.

It is worth highlighting that traditional fault detection
methods often rely on fixed thresholding techniques, which
may face challenges in adapting to dynamic environmental
conditions, resulting in excessive false positives or missed
detections. Therefore, to enhance the accuracy and respon-
siveness of the fault detection system, it becomes essential to
employ adaptive thresholding methods for fault diagnosis. We
propose an adaptive threshold mechanism based on the local
state residual detection metric. Since the local state residual
becomes higher for a faulty local and lower for the unaffected
ones, the threshold for identifying a faulty local is chosen to
be higher than the average value of the local state residuals
across all local filters, i.e.,

γ�,k = 1

N

N∑
i=1

ri,k;� + λ (21)

where the tuning factor λ guarantees a nonzero and higher
residual threshold in contrast to the average value. Notably, the
threshold must remain below the residual of a faulty estimate
and higher than those of nonfaulty estimates. Moreover, the

Algorithm 2: Proposed SFDIA Architecture in the
Presence of Multiple Sensor Faults

Input : Number of local filters N, boundary condition
ubc and ensemble size Ne

1 Initialization: x̂0|0 = x̂0,
2 while k < kend do
3 Main filter: Compute a priori ensemble

{
x̂(j)

k|k−1

}
4 Local filters: Compute local estimates x̂i,k|k and Pi,k|k

using linear measurement updates
5 Fault detection:
6 Compute state-residual vector ri,k and adaptive

threshold rth,k via Eqs. (19) and (21)
7 if r(�)

i,k > r(�)
th,k then

8 Fault detected
9 Local state estimate correction based on

residual via Eq. (20)
10 else
11 No fault
12 end if
13 Information fusion: Compute global estimates x̂k|k

and Pk|k using fault-free local state estimates
14 k← k + 1
15 end while

Output: Fault-free global estimates x̂k|k and Pk|k

adaptive threshold only depends on the tuning factor λ and is
independent of the process and measurement noise amplitudes.
Following the identification of faulty estimates, the local state
estimates are combined using the information fusion.

The various steps involved in implementing the proposed
SFDIA architecture are summarized in Algorithm 2.

IV. NUMERICAL RESULTS

The effectiveness of our proposed architecture is assessed
using simulated data generated according to the transient
flow model discussed in Section II and with reference to
a high-pressure hydrogen-blended natural gas pipeline. The
relevant parameters are specified in Table II. We assume
that the natural gas is blended with 10%-volume hydrogen.2

MATLAB software is utilized to derive the numerical results.
Experiments were developed (and here described accordingly)
in two parts3: the former focusing on the state-estimation
capabilities and the latter focusing on the fault-diagnosis
capabilities.

The boundary conditions are set as p(0, t) = 8.4 MPa,
T(0, t) = 290.15 K, and ṁ(L, t) = f (t) (as shown in
Fig. 2(a). The simulations span a time period of tf ∈ [0, 7200
s], while the spatial and temporal step sizes are �s =
3540 m and �t = 5 s, respectively. The corresponding
simulated data without any observation noise are shown in
Fig. 2(b)–(d). Additionally, Fig. 2(a) illustrates the flow rate
boundary conditions, emphasizing swift variations within the

2To avoid modifications in gas pipelines, that are in service for many years,
the limits set for hydrogen by manufacturers are 5% and 10% [56].

3100 iterations of Monte Carlo Runs are conducted for the experiments.
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TABLE II
PARAMETERS CONSIDERED DURING SIMULATIONS

Fig. 2. Simulated data using ODEs. (a) Boundary condition. (b) Pressure.
(c) Temperature. (d) Flow rate.

solution domain. These variations may arise from disruptions
in gas demand or shifts in the operational settings of control
devices like valves, compressors, and pressure regulators.

The noisy fault-free measurement (yj[k]) for the jth sensor
at the kth time instant is produced by adding zero-mean white
Gaussian noise (qj[k]) to the originally generated noiseless and
fault-free value (xj[k]), i.e.,

yj[k] = xj[k]+ qj[k]. (22)

To validate the robustness of the state estimation by the
proposed architecture, we generated measurement noise con-
sidering three levels of signal-to-noise ratio (SNR): 1) low;
2) moderate; and 3) high. The distribution of the measurement
noise for each of these scenarios is illustrated in Table III.

In our experiments, a total of N = 153 sensors is considered,
consisting of 51 pressure sensors, 51 flow-rate sensors, and
51 temperature sensors. We choose the number of local filters
as M = 3, where each local filter receives an array of 51
sensor measurements of the same type. Within the partial-
distributed EnKF framework, an ensemble size of Ne = 100 is
chosen to optimize the performance. Additionally, the standard
deviation of the process noise is adjusted to be 10% lower than
that of the measurement noise. The matrices Qi,k and Ri,k are
considered as diagonal matrices, where the diagonal elements
represent the variances of the process noise and measurement
noise, respectively.

The estimation performance is evaluated in terms of the
root mean square error (RMSE) in both spatial and temporal

TABLE III
MEASUREMENT NOISE ASSOCIATED WITH PRESSURE, TEMPERATURE,

AND FLOW RATE FOR VARIOUS SNR SCENARIOS

TABLE IV
COMPARING THE RMSE OF DIFFERENT FILTERS IN

NONFAULTY SCENARIOS

dimensions, which is averaged over τ iterations, ensuring
distinct random seeds for each iteration, i.e.,

RMSE = 1

τ

τ∑
i=1

(
‖X − X̂‖F√

nNk

)

where ‖ · ‖F represents the Frobenius norm, and the true state
matrix X and the estimated state matrix X̂ are defined as X =
[xi,1|1, xi,2|2, . . . , xi,Nk|Nk ] and X̂ = [x̂i,1|1, x̂i,2|2, . . . , x̂i,Nk|Nk ],
respectively. Additionally, the number of spatial nodes n
and the number of time steps Nk can be evaluated using
the expressions n = L/�s and Nk = tf /�t, respectively.
The estimation performance of the proposed partial dis-
tributed (proposed PD) technique discussed in Section III
is compared against different baselines, including the fully
distributed version of the proposed architecture (proposed
FD); the model-based multisensor fault detection, isolation
and accommodation (MM-SFDIA) discussed in [40], utilizing
a centralized EnKF-based technique for state estimation; and
the centralized conventional EnKF [23]. In the Proposed FD
version, both nonlinear time updates and linear measurement
updates are carried out by the local filters, while the main
filter only performs the information fusion. The RMSE results
are explicitly presented in Table III, and it is apparent that
the proposed PD achieves a comparable level of estimation
accuracy when compared to the fully distributed version and
to other baselines especially in case of low SNR. Compared
to MM-SFDIA and the centralized conventional EnKF, the
proposed PD uses a PD architecture that utilizes a specific
grouping of measurements discussed in Section III-A. This
grouping introduces numerous redundant state estimates that
are not affected by measurement noise, making the state
estimation of the proposed PD more robust and comparable.
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TABLE V
COMPUTATIONAL COMPLEXITY

Moreover, the computational complexity of our proposed
PD technique is compared against baselines, including the
proposed FD and conventional EnKF, as shown in Table V. It
is clearly demonstrated that our technique has low complexity
compared to the proposed FD and centralized approach for
ny < nx. Consequently, our proposed PD method achieves bet-
ter RMSE with reduced computational complexity compared
to the baselines.

To assess the performance of the proposed estimation
method with SFDIA mechanism, synthetically generated fault
signals are introduced into the simulated data obtained from
the transient-flow model. It is worth noting that sensors
can encounter various types of faults, including bias, drift,
freezing, and random faults, which are commonly observed
issues, as discussed in [9] and [10]. Without compromising a
broad perspective of generality, here bias and drift faults are
specifically employed to demonstrate hard and soft failures,
respectively. The mathematical expressions of these fault types
are discussed as follows.

Bias Fault: A constant offset, denoted by bias (b), is added
to the sensor measurements for a period of G consecutive
samples, which is expressed as

ỹj[k] =
{

yj[k]+ b, 0 ≤ k − g ≤ G
yj[k], else

where ỹj[k] represents the faulty measurement, and g indicates
the time when the fault begins.

Drift Fault: The actual measurement gradually increases (up
to the maximum bias level b) for G time instances, as

ỹj[k] =
⎧⎨
⎩

yj[k]+ b(k−g+1)
G , 0 ≤ k − g ≤ G

yj[k]+ b, G ≤ k − g ≤ G+ K
yj[k], else

where the variable K represents the number of samples during
which the drift fault maintains the saturated bias level b.
Additionally, we highlight the impact of the drift fault by
considering G > K.

The efficacy of our proposed architecture is assessed in
the presence of weak and strong faults for both types (bias
and drift). An absolute level b within a uniform distribution
spanning 20%–40% (resp. 60%–90%) of the data amplitude
is considered for the weak (resp. strong) faults.4 The fault
duration is set by randomly selecting G ∈ {5, 6} and K ∈ {3, 4}
consecutive samples. The randomness in selecting the level
and the duration of the faults is meant to test the robustness
to arbitrary fault characteristics.

4Both positive and negative faults are employed in a randomized manner
to enhance robustness.

Fig. 3. State estimation techniques comparison (classic EnKF (cyan), MM-
SFDIA (dark green) [40], proposed PD without SFDIA (green), and proposed
PD with SFDIA (red) in the presence of three simultaneous bias and drift faults
occurring at indices � = 10, 100, 121. Bias and drift fault results are depicted
in plots (a)–(c) and plots (d)–(f), respectively. Actual values are indicated in
black, while faulty values are shown in blue.

Fig. 3 shows how the various algorithms behave in presence
of multiple faults, with reference to 3 simultaneous bias and
drift faults located in the interval (150 s, 250 s) introduced to
the pressure, flow rate, and temperature sensors indexed with
� = 10, 100, and 121. More specifically, the comparison of
the actual state and the estimated state values obtained using
different approaches (our novel architecture with and without
SFDIA, MM-SFDIA integrating multiple fault detection, and
the classic EnKF method without SFDIA) illustrates the
superiority of our proposed architecture with SFDIA.

The detection performance of the proposed architecture is
further assessed in Fig. 4 in terms of the receiver operating
characteristic (ROC), contrasting the probabilities of detection
and false alarm calculated on a per-sample basis. These plots
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Fig. 4. ROC plots indicating the detection performance of proposed PD
(blue), proposed FD (green), and MM-SFDIA (red) for three simultaneous
faults of different types. (a) Strong bias. (b) Weak bias. (c) Strong drift.
(d) Weak drift.

TABLE VI
COMPARING THE ACCURACY OF THE PROPOSED PD DESIGN WITH THE

PROPOSED FD, AND MM-SFDIA WHILE HANDLING MULTIPLE

SENSOR FAULTS

are generated by varying the tuning parameter λ of the adaptive
threshold. The result confirms that our proposed PD tech-
nique attains a significantly higher detection probability and
considerably lower false alarm probability, particularly in the
weak fault scenario, when compared to MM-SFDIA, a recently
proposed method explicitly designed for addressing multiple
sensor faults. Moreover, a comparison among the architectures
mentioned above is also demonstrated in Table VI in terms of
accuracy.

The robustness of the architecture was assessed with respect
to the number of faulty sensors, with respect to the number of
local filters, and with respect to the bias level. Numerical sim-
ulations showed that the system accuracy remains unaffected
for scenarios with up to 9 faulty sensors, up to 21 local filters
and bias level down to 3%.

Moreover, the fault isolation capability of the proposed PD
method and MM-SFDIA [40] in the presence of multiple
faults is clearly illustrated in Fig. 5. A total of 50 samples is
considered, with a focus on weak bias faults: the “◦” symbol
denotes the actual fault, while “None” signifies a scenario
without any faults within the system. The falsely detected
sensor fault is specified with the “∗” symbol and “+” symbol
indicates the correctly identified fault. It can be observed
that the proposed architecture can effectively detect all sensor

Fig. 5. Fault isolation and detection visualization of (a) proposed PD
architecture and (b) MM-SFDIA.

faults with only a few instances of false detection. On the
contrary, MM-SFDIA fails to correctly identify and isolate the
faulty sensors.

Our proposed PD approach, exploiting the partial-
distributed state estimation framework, does not compromise
the state estimation accuracy while significantly reducing the
computational requirements as illustrated in Table VII in terms
of the average execution time and standard deviation. These
results demonstrate the efficacy of our proposed architecture
achieving high accuracy with low complexity in the presence
of multiple faults in a nonlinear highly complex system dealing
with hydrogen-blended natural gas.

V. CONCLUSION

In this article, a novel approach for state estimation and sen-
sor fault diagnosis in hydrogen-blended natural gas pipelines
experiencing transient flow is introduced. Our method incor-
porates a unique architecture based on a partial-distributed
EnKF framework. The proposed design effectively segregates
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TABLE VII
COMPARING THE EXECUTION TIME OF THE PROPOSED PD

ARCHITECTURE WITH THE PROPOSED FD, MM-SFDIA, AND

CONVENTIONAL ENKF FOR HANDLING MULTIPLE SENSOR FAULTS

the nonlinear computations from the local filters and redirects
them to the main filter, thereby significantly reducing the
computational overhead. Additionally, a new fault detection
and isolation technique, utilizing the local state residuals,
is developed to address simultaneous multiple sensor faults.
Furthermore, an adaptive thresholding technique has been
implemented to enhance fault detection accuracy. Through
extensive simulations, we showcased the effectiveness of our
proposed architecture in accurately detecting and isolating
multiple sensor faults occurring simultaneously. Future work
aims to explore: 1) identifying both process-related issues
(such as leak detection) and sensor faults in natural gas
pipelines; 2) detecting faults in pipelines experiencing vary-
ing operating conditions; and 3) designing control laws or
observers for PDEs governing the flow model.
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